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ABSTRACT 

Language c a p a b i l i t i e s  a r e  a mechanism f o r  dynamic resource manage- 

ment and p ro tec t ion .  They a r e  implemented as p o i n t e r s  whose use is con- 

s t r a i n e d  by compile-time checks. Capabi l i ty  chains  f a c i l i t a t e  h i e r a r c h i c a l  

resource management and e f f i c i e n t  access t o  dynamically managed d a t a  s t r u c -  

t u r e s .  The use of c a p a b i l i t i e s  i s  i l l u s t r a t e d  w i t h  an example message 

passing system. 

suggests  t h e i r  app l i ca t ion  t o  t h e  construct ion and capabili ty-based, l e v e l  

s t r u c t u r e d  operat ing systems. 

The e f f i c i e n c y  and g e n e r a l i t y  of language c a p a b i l i t i e s  
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1 Introduction. 

Operating systems use protection mechanisms to ensure consistent 

environments for concurrent users, to reduce error propagation, and to provide 

user and system components with security against illegal interference. 

Hardware supports protection mechanisms such as paging, segmentation, and 

capabilities [S, 71, while software provides type checking, scoping restric- 

tions and encapsulation. The software mechanisms do not have the generality 

of hardware protection mechanisms, however, since they are only able to 

express static protection schemes. Operating system languages need dynamic 

protection mechanisms that are as flexible as hardware capabilities [1,10]. 

In this paper, we propose a capability based language feature as an extension 

to an existing dynamic access mechanism. The feature depends on compile-time 

checking of access rights and run-time checking of pointer validity. 

Existing protection models consider access by subjects to objects. 

From a practical viewpoint, an operating system is a set of concurrent 

processes that share a common pool of resources such as buffers, memory seg- 

ments, and programmed services. In discussing language protection, therefore, 

we are interested in access by processes to resources (which we will call data 

items or items). - 
Many high level languages, such as Pascal, use strongly typed pointers 

to access dynamically allocated variables [81. With language capabilities, 

the notion of pointer typing is extended to include access rights -- the ways 

in which a pointer may be used. By constraining the modification and copying 

of capabilities to a speciric program module (called a manager), language 

capabilities achieve the sace protection, with the same generality, as is 

achieved by hardware capabilitie-:. However, unlike hardware capabilitles, 
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where access checking must be dynamic, use of language capabilities can be 

checked statically, thus eliminating a major overhead of many existing 

hardware capability implementations. 

Checking for correct capability use is performed statically by a com- 

piler, but dynamic protection is programmed in much the same way as management 

of dynamic data structures. The program components that distribute access to 

dynamically created data items can also,  with minor changes, protect those 

same items. Furthermore, because protection is associated with access, dif- 

ferent access rights may be given processes for the same item - a record can 
be read-only for one process and read-write for another. 

For convenience, language capabilities are described as an extension 

to Path Pascal [ 3 ] .  Path Pascal is an object oriented language in the style 

of Simula [ 4 ] ,  Concurrent Pascal [ 2 ] ,  CLU [ 1 5 ] ,  and Ada [ 2 2 ] .  An object, 

which is declared as a variable or a type, encapsulates data that can be 

accessed only through entry procedures and an initialization block. Synchron- 

ization is specified by a path expression. The features of Pascal that are 

critical to our implementation are pointer access to dynanically allocated 

variables and strong type checking of procedure.parameters. Some form of 

encapsulation is also required. Our examples make extensive use of objects, 

both as protected items and as  managers. 

Capability types are declared within their managers, and their 

automatic export enables processes to declare capability variables. Inside 

managers, capabilities can be used as if they are pointers, while outside 

their managers they can be used only in accordance with their access rights. 
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1.1 Capabilities - for Buffers. 

We introduce language capabilities with an example buffer manager. It 

will be used as a building block for our main example, the port mechanism. 

The buffer manager distributes access to buffers, protecting them by insuring 

that a process can access those buffers it has been allocated and no others. 

Access must, therefore, be revoked when a buffer is returned. 

The buffer type is a Pascal record: 

TYPE buffer-type = RECORD 
size: 0. .mapbuff; 
data: ARRAY [O..max-buff] OF CHAR; 
qptr: ^buffer-type; (* for free list *) 
channel: channel-id; (* used in port mechanism *)  
END 

In standard Pascal, a pointer would be used to access buffers. Ro- 

tected access requires that a pointer be declared: 

TYPE buffer - cap = CAPABILITY buffer - type; read, write END 

The capability type declaration specifies the item to which capahili- 

ties may be bound and their access rights (the ways in ghich the items can be 

accessed). Processes declaring buffer capabilities can use them t o  read and 

write buffers. Capabilities can only be assigned new values within their 

managers. Thus, a process must call the buffer manager to get access to a 

buffer and, once the buffer is returned, access is no longer possible -- 
attempts at access result in run time errors (nil pointer references). The 

buffer manager, which contains the capability declaration, is shown below: 
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TYPE buffer manager type = OBJECT 
PATH 1: (get, release), (* mutual exclusion *) 

(* resource limitation *) no - -  of buffers: (release; get) END; 

TYPE buffer - cap = CAPABILITY buffer - type; read, write END; 

VAR headf 1 : buffer cap; 
b c  : buf fercap; 
i- : integer; 

(* head of free list *) 
(* temporary *) 
(* temporary *) 

ENTRY PROCEDURE get (VAR b: buffer - cap); (* set b pointing to a buffer *) 
(* remove a buffer from free list *) b := headfl; 

headfl := headfl^.qptr; 
bn.qptr := N I L ;  

ENTRY PROCEDURE release (VAR b: buffer - cap); (* accept a returned buffer *) 
b̂ .qptr := headfl; (* place buffer on free list *) 
headfl := b; 
b :- NIL;  (* revoke capability b *) 

I N I T ;  
NEW (headfl); 
headf l̂ .qptr := NIL; 
for i := 2 to no of buffers do - -  

NEW (b-c); 
release (b c); 

END; (* buffer - manager *) 

(* initialization of manager *) 
(* create buffers *) 

Example 1: Buffer Capability Manager. 

Code that can access the buffer manager can declare a buffer capabil- 

ity, which is then passed to the buffer manager to acquire buffers 

(buffer-manager is assumed to be of buffer - manager - type): 
VAR b - cap: buffer - cap; 
buffer - manager.get (b - cap); 

Any field can be accessed by using the capability as a pointer: 

b - cap^,data [4] := ‘x’; 

This example raises several issues. These include control of buffer- 

type instantiation, control of access to the buffer manager, and the use of 

capabilities as parameters. These issues, and the issues of capability chains, 

. 
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revocation, and implementation are addressed in Chapter 2. Chapter 3 presents 

the port mechanism, an example of a protected message passing system. Chapter 

4 reviews previous work on language protection and capabilities, then Chapter 

5 discusses several protection issues. Finally, Chapter 6 comments on the use 

of language capabilities for operating system construction. 

2 Language Capabilttfes. 

Five characteristics distinguish language capabilities from ordinary 

pointers. These characteristics combine to provide strong protection and 

revocation abilities: 

1) Access rights are specified when capability types are declared. 

2) The type of a capability is automatically exported from the object or 

procedure in which it is declared. This object or procedure is called 

the manager of that capability. It controls access to the protected 

item. 

3) Outside managers, capabilities can only be used in accordance with 

access rights. 

4) Outside managers, capabilities cannot be copied or assigned. 

5) Capabilities may form chains that are automatically dereferenced. 

For simple (non-object) data items the only possible access rights are 

read and write, but for Path Pascal objects the possible access rights are the 

entry procedures of the object (e.g., a capability for the buffer - manager - type 
could have 'get' and 'release' as rights). Export of program types is used 

in several languages (e.g., Modula [23]) to construct variables whose internal 

structure is inaccessable to all program components except the mznager for 

that type. We use export to construct variables (Capabilities) whose internal 

structure is visible and usable, but which cannot be copied outside their 



Page 6 

managers . 

2.1 Chains. 

Capability chains occur whenever capabilities for capabilities are 

defined. If any capability on a chain is dereferenced outside its manager, 

the rest of the chain is followed to the final item. Thus, levels of manage- 

ment may be made transparent to processes. Chains are used to construct 

hierarchical protection schemes and as a means of sharing access to protected 

variables without copying capabilities. 

When a chain is used, the item being protected does not change even 

though a level of management is added. Consequently, a distinction is needed 

between the item protected by a manager (note that a manager which declares a 

capability for a capability is protecting capabilities), and the item type to 

which a chain is ultimately bound. The former type is known as the manzged 

type of a capability. It can be any valid type, including another capability. 

The latter type is called the item type of any capability on the chain. -- 

Within its manager, the rule that a capability is used as a pointer 

means a single dereference produces a variable of the managed type (not - 
the item type). Only one link of the chain is followed, a second dereference 

being needed to follow the rest of the chain. This property is used in the 

aort mechanism below. It means that within a manager a clear distinction is 

seen between manipulation of the managed type and manipulation of the itein 

type 

that 

The access rights of a chain are those of its first link. Thus, the 

Capa- access rights of a capability apply to the item type of the capability. 

. 
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b i l i t i e s  f o r  c a p a b i l i t i e s  may have only s u b s e t s  of t he  r i g h t s  of t h e i r  managed 

types.  When a c a p a b i l i t y  is bound d i r e c t l y  t o  a n  item, t h e  c a p a b i l i t y  may 

have as r i g h t s  any of the v a l i d  operat ions on t h e  i t e m .  This s t o p s  a manager 

from d i s t r i b u t i n g  g r e a t e r  r i g h t s  t o  a n  item than i t  i t s e l f  has. Consider 

Example 2: 

TYPE cl - CAPABILITY bu f fe r  type; read, write END; - 

TYPE c2 0 CAPABILITY cl; read, mi te  END; 

TYPE c3 = CAPABILITY c2; read END; 

VAR vl:  c l ;  
v2: c2; 
v3: c3; 

This enab les  a cha in  t o  be b u i l t :  

v3 --> v2 --> vl --> a b u f f e r  v a r i a b l e  

Example 2: Capabi l i ty  Chains. 

In t h i s  example cl ,  c2, and c3 are considered t o  have d i s t i n c t  

managers. Tnus, a c a p a b i l i t y  of type c3 (such as v3) r e p r e s e n t s  t he  t h i r d  

level  of management. The item type of cl,  c2, and c3 is  the b u f f e r  t ype ,  

wh i l e  the managed types are b u f f e r  - type, c l ,  and c2 r e spec t ive ly .  I f  v l ,  v2, 

- 

or v3 is dereferenced o u t s i d e  i t s  manager, t h e  cha in  w i l l  be followed t o  t h e  

f i n a l  bu f fe r  instance.  

2.2 Revocation. 
_e__- 

A manager c o n t r o l s  t h e  number of c a p a b i l i t i e s  bound t o  a n  item. Con- 

sequent ly ,  normal r evoca t ion  can be accomplished by s e t t i n g  capabilities t o  

@nil@ when they are returned by a process,  t hus  removing the accees pa th  from 



Page 8 

process t o  item (e.g. 'release' in the buffer manager). 

A simple form of preemptive revocation can be ,splemented with an 

extra link on the chain [23]. The capabtlity manager distributes not the capa- 

bility itself, but a capability for it, so that the original capability is 

retained by the manager and can be set to 'nil' when preemptive revocation is 

required. As a result of automatic chain dereferencing, the extra level of 

indirection is transparent to processes. 

process space manager space 

cap f o r  item -- 
nullify this 

Figure 1: Chain-based Preemptive Revocation. 

A more sophisticated form of preemptive revocation, a method that 

requires processes using revokable capabilities to be aware of revocability, 

is to have the manager retain a pointer into a process's space, thereby ena- 

b l i n g  the manager to revoke a capability directly (Figure 2). This requires 

the user process to pass the manager a pointer to a capability rather than the 

capability itself. The manager then makes a copy of the pointer before issu- 

ing the capability. The disadvantage of user-awareness in this scheme is 

offset  by the advantage that no non-reusable 'slots' are created, as happens 

with the first scheme. 
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process space manager space 

Figure 2: Pointer-based Preemptive Revocation. 

Revocation of a capability for an item containing code (an object) 

requires that the revoker ensure that no process is active within the item 

before considering revocation to be complete. Path expressions and procedure 

entry counts are two mechanisms that can be used to do this .  

2.3 Capability Parameters. - 

Use of capabilities as procedure parameters is limited to calls by 

reference (by VAR in Pascal). Calls by reference create a pointer (invisible 
.\ 

to the programmer) to the capability being passed, maintaining the policy that 

managers have total control over the issuing and copying of capabilities. 

To reduce rights, capabilities require type coercion when they are 

passed as parameters outside a manager. Coercion is a bracketing construct 

with the new type of the capability enclosing the actual capability. The 

rights of the new type must be a subset of the rights of the capability being 

coerced. The type used to coerce a capability need not be known to the 

manager €or that capability, but must be known to both caller and callee. 

Consider Example 3: 
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TYPE b cap = CAPABILITY b u f f e r ;  read, write END; 
b-read - - o n l y  = CAPABILITY buf fe r ;  read END; 

PROCEDURE read - buffer (VAR b: b - read - only);  

END; 

VAR l o c a l  - b: b - cap; 

r ead  - b u f f e r  ( b - read - only ( l o c a l  - b) ); (* example of l e g a l  coe rc ion  *) 

Example 3: Capabi l i ty  Type Coercion. 

Example 3 shows two c a p a b i l i t i e s  t h a t  have t h e  same item and managed 

type: a buffer .  Since b - read - only has a subset  of t h e  access r i g h t s  of b - cap, 

a v a r i a b l e  of type b-cap can be coerced t o  type b - r e a d  - only in t h e  ca l l  on 

read - buf fe r .  While the containing process has read and write access through 

local  b, read - buffer  can only read t h e  itern t o  which l o c a l  - b is  bound. - 

2 . 4  Scoping Constraints.  

We use  the Restrict pseudo-statement [ I ]  t o  c o n t r o l  i n s t a n t i a t i o n  of 

protected types. The d e c l a r a t i o n ,  which r e p r e s e n t s  func t ion  r a t h e r  than a 

p a r t i c u l a r  syntax, is c l e a r l y  more e f f i c i e n t  than programmed checks. Restrict 

l i m i t s  i n s t a n t i a t i o n  (NEW i n  Pascal)  and e l i m i n a t i o n  (DISPOSE) of p r o t e c t e d  

items t o  a managing ob jec t  o r  procedure, without  c o n s t r a i n i n g  access by 

processes  t o  the i n t e r n a l  s t r u c t u r e  of p ro tec t ed  types. An example, used i n  

t h e  p o r t  mechanism, is: 

RESTRICT buffer-type TO buffer-manager 
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2.5 Implementation. 

No additional run-time checking mechanisms are needed to implement 

language capabilities. All changes are to the compiler, which must recognize 

capability declarations and the Restrict statement, and enforce correct use. 

Inside its manager, a capability may be used as a pointer. Outside its 

manager, a capability for an object cannot be used except to call the entry 

procedures specified in the capability's access rights. Capabilities for sim- 

ple data items may be used in any expression if the read right is set; if the 

write right is set the capability may be used on the left of assignment state- 

ments. The usual strict typing, augmented with the coercion described above, 

is used to control capability parameter passing. 

Structures, such as records and arrays, that contain capabilities can- 

not be copied. To avoid the 'forging' of capabilities, capabilities cannot be 

placed in variant fields of records. 

On procedure entry, all capabilities declared locally must be initial- 

ized to nil to avoid 'dangling' pointer references. Concurrency considera- 

tions dictate that capability chains must be completely dereferenced each time 

they are used - some sub-expression optimizations are not possible. In par- 

ticular, the 'with' statement may not circumvent chain dereferencing, but 

instead must follow the entire chain on each access. Xutually recursive 

management of object capabilities can lead to an infinite chain of dereferenc- 

ing that must be flagged as a compile-time error. 
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3 Message Communication Using Capabilities. 

Our main example shows the capabilities and data types used to imple- 

ment a 'port' mechanism. The port mechanism illustrates capability features 

required to build a protected file system [16] .  It demonstrates simple revo- 

cation, the granting of different access rights to the same item, and 

hierarchical management with capability chains. Capabilities for both simple 

data items and Path Pascal objects are used. 

. 

The example is based on a 'canonical' message passing system 

(described in [ 1 4 ] )  in which processes communicate through ports (Figure 3 ) .  

Three objects are used to build the mechanism: the buffer manager (shown 

above), the port itself, and the port manager. Each process is assigned a 

port object by the port manager. Requests for empty buffers and for buffer 

passing are then handled by the process's port. The ports use a common pool of 

buffers maintained by the buffer manager to satisfy requests for buffer 

acquisition and release. A process can access only the port allocated to it by 

the port manager and the buffers passed to it by its port. 
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0 
I 

:esses 

Figure 3: Representation of Message System. 

P o r t s  are subd iv ided ' in to  channels. Incoming b u f f e r s  are h e l d  on a 

s i n g l e  queue i n  t h e  port .  A process can t e l l  from which channel a b u f f e r  came 

by t he  'channel' f i e l d  i n  the buffer  - t he  p o r t  does not supply t h e  i d e n t i t y  

of t h e  process  t h a t  s e n t  t he  buffer. 

3.1 Process  I d e n t i t i e s .  

To p r o t e c t  p o r t s  a g a i n s t  i l l e g a l  access some means of i d e n t i f y i n g  

p rocesses  is needed. This is implemented by a 'process i d  manager' t h a t  

i s s u e s  i d e n t i t l e s  t o  processes.  Process i d e n t i f i e r s  are accessed through a 

process  l d e n t i f  ler  c a p a b i l i t y  : 

TYPE process  i d  cap = CAPABILITY i n t e g e r ;  r ead  END - -  

A set of these c a p a b i l i t i e s  is generated by the 'basic' ope ra t ing  sys- 

tem, which then issues them t o  processes as t h e  processes  are i n s t a n t i a t e d :  
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PROCESS any - process ( V U  id: process - ih-cap); 

... code ... 
END; (* any - process *) 

Because they are accessed through a read-only capability, process 

identifiers are unique, unforgeable, and indestructible. The strong typing 

(name equivalence) of parameter passing ensures that, when passed as parame- 

ters, process identifier capabilities correctly identify the calling process. 

The identity of a process is found by dereferencing its process - id capability. 

3.2 Ports. 

Port objects are at the 'outer edge' of a management hierarchy in 

which levels are strictly separated - the buffer manager is independent of 
the additional management implemented in the ports, and processes are indepen- 

dent of the buffer manager. To support this separation, ports use explicit 

queueing records. The bindings from processes to buffers (a chain of 2 capa- 

bilities) and the queues of buffers are depicted in the Appendix. 

The appendix also contains the coding of the port mechanism in Path 

Pascal. The process associated with a port uses the entry procedures 

'user - get' and 'user - release' to acquire buffers and release them. The port 

gets buffers from the common pool maintained by the buffer manager. User 

processes call 'send' and 'receive' to communicate with other processes. The 

procedure 'supply' implements inter-port communication by accepting a buffer 

sent by a source port and enqueueing it at the destination port. The port 

manager uses configuration routines 'init buffer manager' and 'set - channel' to 

arrange port access to the buffer manager and port access to other A 

- - 
ports. 
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pa th  expression i n  the  por t  con t ro l s  both mutual exc lus ion  f o r  the queue d a t a  

s t r u c t u r e  and blocking when execut ions of ' receive '  are attempted wi th  a n  

empty buf fer  queue. I n s t a n t i a t i o n  of managed items (buf fe r s ,  t he  b u f f e r  

manager, and po r t s )  i s  cons t ra ined  by Restrict s ta tements .  

To p r o t e c t  i t  from d i r e c t  access  by processes ,  p o r t s  access t h e  

b u f f e r  - manager through a poin ter .  A restrict s ta tement  a u t h o r i z e s  t h e  p o r t  

manager t o  c r e a t e  buf fer  managers; d i s t r i b u t i o n  of p o i n t e r s  t o  t h e  b u f f e r  

manager is  l i m i t e d  t o  po r t s .  Thus, t h e  b u f f e r  manager is common t o  a l l  p o r t s ,  

y e t  cannot be accessed by c t h e r  program elements.  

When a buf fe r  i s  f i r s t  requested from t h e  b u f f e r  manager, t h e  p o r t  

a t t a c h e s  a buff - cap t o  i t  as a 'tag' t h a t  t he  por t  can manipulate. This is 

removed when the  bu f fe r  is  re turned  t o  t h e  b u f f e r  manager. A u se r  process 

uses  use r  buff caps t o  access  buffers .  These are set t o  n i l  when not a c t u a l l y  

bound t o  a buffer .  

- 

- 
- - 

To communicate wi th  o t h e r  processes  through the  p o r t  mechanism a pro- 

cess f i r s t  d e c l a r e s  a por t  c a p a b i l i t y  and calls the  po r t  manager t o  have i t  

bound ( ' id '  is a process  i d e n t i f i e r  c a p a b i l i t y ) :  

VAR my - port :  user  - por t  - cap; (* dec la re  por t  c a p a b i l i t y  *) 

p o r t  manager.issue use r  - por t  ( i d ,  my - p o r t ) ;  (* i n i t i a l i z e  i t  *) - - 

The c a p a b i l i t y  'my - por t '  is then used t o  acqu i r e ,  pass, and release 

Variables  of type 'user  - buff - cap' con ta in  c a p a b i l i t i e s  f o r  bu f fe r s :  bu f fe r s .  

VAR b: user  buff - cap; 

my - por tA .user  - g e t  (b) ; 

b*.data := 'a message'; (* place  information i n  the  bu f fe r  *) 

my - portA.send (b,4);  

(* d e c l a r e  a c a p a b i l i t y  f o r  a b u f f e r  *) 

(* r eques t  an  empty b u f f e r  *) 

- 

(* send b u f f e r  v i a  channel 4 *) 
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my port̂ .receive (b); (* receive an incoming buffer -- - 
or block until there is one *) 

The only global, statically instantiated portion of the message system 

is the port manager. A l l  other structures are instantiated dynamically -- 
capabilities are used to grant access on a 'need to know' basis. At no time 

can a process or port access any buffers, ports, or entry procedures other 

than those to which access has been explicitly granted. 

4 Capabilities - and Dynamic Protection. 

Capabilities, proposed by Dennis and Van Horn [ 5 ]  and later refined by 

Fabry (71, were originally a low-level, hardware-oriented concept. A capabil- 

ity was a hardware-defined name or address for a data item, constraints on 

which were used to achieve highly protected systems. Several capability 

machines have been implemented [6,18].  These interpret access rights and 

unique itein addresses during execution using microcode and associative 

memories. Their capabilities are either stored in special capability seg- 

ments, or are distinguished from data by tag bits that specify access rights. 

Capability operating systems for traditional machine architectures have also 

been implemented [ 1 9 , 2 4 ] .  These use access interpretation (or 'soft' address- 

ing mechanisms) in a secure kernel to enforce protection. 

Jones and Liskov [10,11] initially suggested implementing capabilities 

for languages, but did not coneider managers specifically. hstead, any pro- 

cess could create an item and pass it with reduced rights to other processes 

or procedures. Their coercion was automatic -- we consider it preferable that 
an explicit language construct be used t o  coerce types. However, their use oE 

compile-&€me checking and static association of rights with capabilities is 
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similar to our own, and our mechanism can be specified in terms of their model 

[171. 

Silberschatz, Kieburtz and Bernstein [21] approached capability pro- 

tection motivated by nested monitor problems that arise in Concurrent Pascal. 

They introduced a manager construct to the language, and the standard pro- 

cedures 'bind' and 'release' to control 'the number of bindings of capabilities 

to items with a hidden count. Because of this, their mechanism requires 

greater implementation effort than ours, and is not as efficient or as flexi- 

ble. The use of an explicit manager construct prohibits construction of 

hierarchical management schemes. Further run-time support and an additional 

language feature are needed to implement preemptive revocation [12]. 

McGraw and Ar,drews [161 proposed a capability scheme for Concurrent 

Pascal in which access rights are checked dynamically. While much of the 

functionality of their scheme is similar to ours, we do not feel that the 

overheads of dynamic checking are warranted. Their protected variables [ l ]  

associate protection with a variable rather than with access to it. This 

makes an unfortunate distinction between protection of monitors and protection 

of simple variables, and reduces the orthogonality of protection and synchron- 

i za t Ion . 
In previous work on language capabilities, the synchronized program 

object has been emphasized as the unit of protection. Pointers, however, can 

be used for all data structures. Since pointers can readily be modified to 

build Capabilities, we consider the emphasis on object protection to be unnec- 

cessary. The generality of our scheme simplifies implementation, fzcilitates 

construction of capability based operattng systems, and separates the orthogo- 

nal concepts of synchronizatfon and protection. 



Page 18 

Ada [22], a newer language than those discussed above, has protection 

facilities similar to those of Modula [23] .  Private types are exported from 

packages, so that other program components can possess variables of those 

types. In direct contrast to our scheme, however, the structure of private 

types is inaccessible outside packages (managers), and they - can be freely, 

copied by any program component. Thus, a port mechanism (or file system) that 

relies on protected pointers for access to buffers and port (or file) objects 

cannot he built. Instead, protected variables must be passed t o  procedures in 

packages to access internal fields or entry procedures. This incurs consider- 

\ 

able overhead. 

5 Discussion. 

5.1 The 'Copy Right'. -- 

Implementation of chains has allowed us to dispense with the 'copy 

right' provided in many schemes [16,131. This simplifies revocation and coer- 

cion, and there is no longer any need to control capability assignments out- 

side managers. The need for a 'nullify' right is also eliminated [ I ] .  This 

enhances reliability, since capabilities cannot be accidentally nullified 

thereby 'losing' resources. Similarly, it is not possible €or a process to 

destroy a capability by assigning it a legitimately held capabil- 'copyable' 

ity . 

5.2 Impersonation. 

If processes can pass each other access to process identifters or port 

capabilities, protectLon violations can occur. This 'impersonation' is a 

general problem that we do not intend to prohibit at the language level. 
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we direct attention to the structure of the overall system. Consider Instead, 

the example configuration in Figure 4: 

/ 

parent 
vrocess 

/\ 
process process 

A B 

Figure 4. 

Our contention is that, I n  a well structured system, processes A and R 

should communicate only by passing capabilities through some common ancestor 

(the parent process). monitored 

at that ancestor, thus building a 'firewall' that disallows the parameter 

passing needed for impersonation. If the parent does not have this control 

over A and B they should be viewed as a single process. Language mechanisms 

that provide the scoping control needed to implement this level of static 

protection already exist [ 2 2 ] .  

The conversation between A and B can then be 

6 Capability Operating Systems. -- 

One of the main advantages of the generality of our mechanism its 

utility for operating system construction. An operating system can use 

language capabilities to control access by processes to protected structures 

and servtces. Capabilities can a l s o  be used to control access between levels 

in level structured operating systems. I / O  

is depicted in Figure 5. 

is 

9 

* 
A scheme for implementing logical 
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level 1: 

level 2: 

root OS ( I / O  area manager, 
logical I/O manager) 

logical I/O ports - physical I / O  
process processes 

. 

level 3: user 
program 

Figure 5. 

In this scheme the logical I/O process is responsible for translating 

device-oriented physical 1/0 to the logical I/O required by user processes. 

When the user is loaded, the root operating system issues it a capability for 

logical I/O. When an I / O  request is made, a capability for logical I / O  is - 
passed as a parameter to the logical 1/0 object. The I/O transfer is then 

made without any possibility of the 1/0 object interfering in other memory 

space. is The I / O  area capability is  automatically revoked when the transfer 

complete. Operating system modules are thus prevented from unauthorized 

access to user memory space, and user programs are prevented from making 

direct access to system memory space 
G 

Using this scheme the loading of a user program is actually a strongly 

typed binding. In [17 ] ,  Specification is made of the dynamic binding require- 
. 

ments and language mechanisms f o r  control of the processor state transitions 

needed to execute user programs and recognize their requests for service. 
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7 Summary. 

c 

a 

1 

We have described language capabilities, a scheme for dynamic access 

control that is efficient, easily implemented, and that leads to clearly v i s i -  

ble program protection structures. Language capabilities are based on a type 

extension of pointers. Capabilities and capability chains are consistent with 

existing data types and require no additional run time support mechanisms. 

Capabilities are declared in managers and their types are exported so that 

other program components can declare capability variables. They can be used 

to construct arbitrarily nested management schemes for both encapsulated and 

simple data structures. 

An example message passing facility has been used to illustrate the 

use of capabilities. The facil€ty includes unforgeable process identities, a 

common buffer pool, a port mechanism for buffer passing and management, and 

direct access to buffer records once they are issued to processes. The 

features of capabilities used to build the port manager are the same as those 

required to build a 'file' mechanism. 

Finally, we have indicated the utility of language capabilities for , 

operating system construction. Checking of capability access rights can be 

implemented a t  run-time by a tagged architecture. Alternatively, a reliabl 

compiler can check access rights at compile time. Because of increased ef l 
ciency that results from this static checking, we predict that language capa- 

bilities will play a major role in future operating system implementation 

languages. 
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10 Appendix: The Por t  Mechanism. -- 

10.1 Binding of C a p a b i l i t i e s  t o  Buffers. - 

process space po r t  space bu f fe r  manager 
space 

Figure 6 (a): Process Binding t o  Buffers.  

head q 4-1 t a i l  q 4-' 
(q-records) 4LF 

a 

. 

buffer  cap I 
buf fe r  I 

Figure 6 (b): Queuing of Buffers  i n  P o r t s  

10.2 The Port and Por t  Manager Objects. ---- 

RESTRICT b u f f e r  type TO buf fe r  manager type;  
RESTRICT buf f e rmanage r  type  TC por t  - manager; 
RESTRICT p o r t  - type TO po r t  - manager; 

TYPE p o r t  type  = OBJECT 
PATH (send, supply,  rece ive ,  s e t  - channel) ,  (* mutual exc lus ion  *) 

(supply; rece ive)  END; (* queue c o n s t r a i n t s  *) 

: , . .. 
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TYPE channel i d  = O..max channel; 
= RECORD- t o  - p o r t r e c  - 

t o  p o r t  : port-supply - cap; 
t o c h a n n e l  : channel - i d ;  
EN& 

user buf fe r  cap = ChPABILITY b u f f e r  - cap; read, write END; - 
q record = RECORD - 

b u f f e r  
next  : ^q - r eco rd ;  
END; 

: use r  b u f f e r  - cap; 

VAR my channels : ARRAY [ l .  .max - channels]  OF t o  - p o r t  - rec; 
heyd q : ̂ q r eco rd ;  
tail-q : ^q-record; 
tempIq : ^ q r e c o r d ;  
b u f f e r  - manaser : ^buf fe r  - manager - type; 

ENTRY PROCEDURE use r  ge t  (VAR b: u se r  - b u f f e r  cap);  - 
(* c a i l e d  by a use r  process  t o  *) 
(* g e t  a bu f fe r  from common pool *) 
(* r e t u r n  b = NIL i f  t h e r e  are none *) 

IF  b = NIL THEN NEW (b) ELSE e r r o r ;  (* b is  still bound *) 
b u f f e r  - manager^.get (bA); 

ENTRY PROCEDURE user  - release (VAR b: u se r  b u f f e r  cap); 
(*-called-by a use r  process  t o  *) 
(* release buffer  t o  common pool *) 

I F  b - NIL THEN e r r o r  

b u f f e r  manager^.release (b-) ;  
DISPOSE (b); 

ELSE IF bA = NIL THEN e r r o r ;  

ENTRY PROCEDURE send (VAR b: u s e r  b u f f e r  cap; 
c:  chanzel  id): 

(* c a l l e d  by a use r  p r o c e s s  t o  *) 
(* send a bu f fe r  t o  po r t  i nd ica t ed  by 'e' *) 

I F  b = NIL THEN e r r o r  (* no b u f f e r  cap  a t t a c h e d  *) 
ELSE IF  bA = NIL THEN e r r o r ;  (* no b u f f e r a t t a c h e d  *) 
b^^.channel := mychannels [ c ] . t o  channel; (* mark channel on b u f f e r  *) 
my - channels [c] . t o  - port^.supply T b ) ;  (* send it *) 
b :a NIL;  
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d 

V 

ENTRY PROCEDURE supply (VAR b: user buffer cap); 
(* called by another port Tn 'send'. *) 
(* accept incoming buffer and enqueue it *) 

IF head q <> NIL THEN 
NEW rtail - q̂ .next); 
tail q := tail - q^.next; 
NEW (head - 4); 
tail q := head - q; 

tail qA.next := N I L ;  
tail-q̂ .buffer - := b; 

- 
ELSE 

- 

ENTRY PROCEDURE receive (VAR b: user buffer cap); 
(* called by user pr&ss to get an incoming buffer *) 
(* remove buffer from queue and release it to process *) 

IF b <> N I L  then error; 
b := head - q^.buffer; 
temp-q := head q; 
head q := headq^.next; 
D I S P ~ S E  (temp - y) ; 

(* still bound *) 

ENTRY PROCEDURE init buffer manager (b m: ^buffer manager type); 
(* called by port manager in initTalizatiTn sequence *) 
(* establish pointer to buffer manager *) 

buffer manager := b - m; - 
ENTRY PROCEDURE set channel (c: channel id; (* 'from' channel *) - 

to c: channel id; (* 'to' channel *) 
to'p: port supply cap); ( *  'to' port *) 

(* called by port manager to *T 
(* establish channel mapping *) 

WITH my channels [c] DO 
to cxannel := to - c; 
toport - := to-p ; 

VAR port manager: OBJECT 
PATH Tssue - user - port, 1: establish - port - mapping END; 
TYPE user-port cap = CAPABILITY port type; get, release, send, receive END; 

port-suppiy - cap = CAPABILITY port; supply END; 

VAR buffer - manager: ^buffer manager type; 
port: ARRAY [l..no - -  of processesT OF user - port - cap; 
i : INTEGER; 

ENTRY PROCEDURE issue user port (VAR id: process - -  id cap; - - 
VAR upc: user port cap); 

(* initialize a user process'sportcapability *) 
upc := port [id^]; 
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ENTRY PROCEDURE establish port mapping ( - 1; 
(* check caller's identity-in accordance with OS design here *) 
(* use set channel calls to make a mapping *) - 

INIT;  (* port manager initialization code: establish ports etc. *) - 
NEW (buffer manager); 
FOR i := I TO no of processes DO 

NEW (port [i]T; 
port [ f ]  ̂ . i n i t  buffer manager (buffer manager); 

- 

- - - 
END; (* port - manager *) 

4 


